Nick Foti

About Me

I am a Postdoctoral Research Associate in the Statistics Department at the University of Washington where I work with Emily Fox.

I received my PhD in computer science at Dartmouth College. My advisor was Dan Rockmore.

My research focuses on Bayesian nonparametric statistics applied to machine learning. Specifically, I work on developing dependent nonparametric priors and the associated inference algorithms for covariate-dependent latent variable models and more generally for modeling non-exchangeable data. Additionally, I am interested in large-scale inference for Bayesian nonparametric models.

Prior to Dartmouth I received my BS in Computer Science and Mathematics from Tufts University. While at Tufts I worked with professors Soha Hassoun and Sarah Frisken.

News

2/4/2015 I presented a Graduation Day poster on stochastic variational inference for hidden Markov models at the 2015 Information Theory and Applications Workshop.

1/10/2015 Our paper on streaming variational inference for Bayesian nonparametric mixture models was accepted to AISTATS 2015.